Article ID Journal Published Year Pages File Type
6484173 Biocybernetics and Biomedical Engineering 2018 13 Pages PDF
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an important challenge in studies of children's ethology that unbalances the opposite behaviors for creating inattention along with or without hyperactivity. Nevertheless, most studies on the ADHD children, which employed the EEG signals for analyzing the ADHD influence on the brain activities, considered the EEG signals as a random or chaotic process without considering the role of these opposites in the brain activities. In this study, we considered the EEG signals as a biotic process according to these opposites and examined the ADHD effect on the brain activity by defining the dual sets of transitions between states in the complement plots of quantized EEG segments. The results of this study generally indicated that the complement plots of quantized EEG signal have a surprising regularity similar to the Mandala patterns compared to the chaotic processes. These results also indicated that the probability of occurrence of dual sets in the complement plots of ADHD children was averagely different (p < 0.01) from that of healthy children, so that the SVM classifier developed by these probabilities could significantly separate the ADHD from healthy children (99.37% and 98.25% for training and testing sets, respectively). Therefore, the complement plots of quantized EEG signals relevant to the ADHD children not only can quantify informational opposition caused by inattention, hyperactivity and impulsivity, but also these plots can provide remarkable information for developing new diagnostic and therapeutic techniques.
Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , ,