Article ID Journal Published Year Pages File Type
648472 Applied Thermal Engineering 2009 5 Pages PDF
Abstract

Understanding the thermal effects is critical in optimizing the performance and durability of proton exchange membrane fuel cells (PEMFCs). A PEMFC produces a similar amount of waste heat to its electric power output and tolerates only a small deviation in temperature from its design point. The balance between the heat production and its removal determines the operating temperature of a PEMFC. These stringent thermal requirements present a significant heat transfer challenge. In this work, the fundamental heat transfer mechanisms at PEMFC component level (including polymer electrolyte, catalyst layers, gas diffusion media and bipolar plates) are briefly reviewed. The current status of PEMFC cooling technology is also reviewed and research needs are identified.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,