Article ID Journal Published Year Pages File Type
6485253 Biomaterials 2016 38 Pages PDF
Abstract
Tissue repair processes are characterized by the biphasic recruitment of distinct subpopulations of blood monocytes, including classical (“inflammatory”) monocytes (IMs, Ly6ChiGr1+CX3CR1lo) and non-classical anti-inflammatory monocytes (AMs, Ly6CloGr1−CX3CR1hi). Drug-eluting biomaterial implants can be used to tune the endogenous repair process by the preferential recruitment of pro-regenerative cells. To enhance recruitment of AMs during inflammatory injury, a novel N-desulfated heparin-containing poly(ethylene glycol) diacrylate (PEG-DA) hydrogel was engineered to deliver exogenous stromal derived factor-1α (SDF-1α), utilizing the natural capacity of heparin to sequester and release growth factors. SDF-1α released from the hydrogels maintained its bioactivity and stimulated chemotaxis of bone marrow cells in vitro. Intravital microscopy and flow cytometry demonstrated that SDF-1α hydrogels implanted in a murine dorsal skinfold window chamber promoted spatially-localized recruitment of AMs relative to unloaded internal control hydrogels. SDF-1α delivery stimulated arteriolar remodeling that was correlated with AM enrichment in the injury niche. SDF-1α, but not unloaded control hydrogels, supported sustained arteriogenesis and microvascular network growth through 7 days. The recruitment of AMs correlated with parameters of vascular remodeling suggesting that tuning the innate immune response by biomaterial SDF-1α release is a promising strategy for promoting vascular remodeling in a spatially controlled manner.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,