Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6485667 | Biomaterials | 2015 | 9 Pages |
Abstract
Simultaneously targeted imaging cytoplasm and nucleus in living cell by just one photoluminescent nanocrystals has been a giant challenge in nanobiotechnology and nanomedicine. Herein we report a novel Arg-Gly-Asp peptide (RGD) or cysteine (Cys) functionalized ultra-small GdOF nanocrystals for simultaneously targeted imaging cell cytoplasm and nucleus. As-prepared RGD@GdOF and Cys@GdOF nanocrystals possessed high water dispersibility, ultra-small size (about 5Â nm) and double emissions (545Â nm and 587Â nm) with high quantum yield. Such functionalized nanocrystals presented high cellular biocompatibility and were successfully used to label living cells with very high signal to noise ratio. The living cells cytoplasm and nucleus (cancer cells and stem cells) could be imaged simultaneously through the mergence of green and red emission of nanocrystals, based on mechanism of fluorescent intensity difference. These functionalized nanocrystals also exhibited significantly higher photostability and brightness as compared to dyes. Such the ultra-small size, high photostability and intensity, double emissions, excellent biocompatibility and targeted ability, make as-prepared functionalized nanocrystals particularly promising for cellular and molecular-level bioimaging applications.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Jin Yan, Wangxiao He, Na Li, Meng Yu, Yaping Du, Bo Lei, Peter X. Ma,