Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6486344 | Biomaterials | 2015 | 10 Pages |
Abstract
The migration of cells from the side and the bottom of the defect is important in osteochondral defect healing. Here, we designed a novel collagen scaffold that possessed channels in both the horizontal and the vertical directions, along with stromal cell-derived factor-1 (SDF-1) to enhance osteochondral regeneration by facilitating cell homing. Firstly we fabricated the radially oriented and random collagen scaffolds, then tested their properties. The radially oriented collagen scaffold had better mechanical properties than the random scaffold, but both supported cell proliferation well. Then we measured the migration of BMSCs in the scaffolds in vitro. The radially oriented collagen scaffold effectively promoted their migration, and this effect was further facilitated by addition of SDF-1. Moreover, we created osteochondral defects in rabbits, and implanted them with random or oriented collagen scaffolds with or without SDF-1, and evaluated cartilage and subchondral bone regeneration at 6 and 12 weeks after surgery. Cartilage regeneration with both the radially oriented scaffold and SDF-1 effectively promoted repair of the cartilage defect. Our results confirmed that the implantation of the radially oriented channel collagen scaffold with SDF-1 could be a promising strategy for osteochondral repair.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Pengfei Chen, Jiadong Tao, Shouan Zhu, Youzhi Cai, Qijiang Mao, Dongsheng Yu, Jun Dai, HongWei Ouyang,