Article ID Journal Published Year Pages File Type
648773 Applied Thermal Engineering 2009 9 Pages PDF
Abstract

Numerical analysis of an adsorption cycle employing advanced three-bed mass recovery cycle with and without heat recovery is introduced in this paper. The cycle consists of three silica gel adsorbent beds with different heat utilization functions. The beds can be divided into two cycles with different desorption mechanisms. The working principle of the cycle is introduced, and performances of three-bed, single stage, and mass recovery adsorption cycles are compared in terms of coefficient of performance (COP) and specific cooling power (SCP). The paper also presents the effect of adsorber mass distribution and desorption time on performance. The results show that by applying heat recovery to the cycle, better COP values will be produced compared to that without heat recovery. The results also show that there is an optimum point of adsorber mass distribution and desorption time that produces optimum performance. Furthermore, the paper also compares the performances of the proposed cycle, a single-stage cycle, and a mass recovery cycle.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , ,