| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6490109 | Journal of Biotechnology | 2018 | 22 Pages |
Abstract
Quantum dots are important fluorescent semiconductor nano-crystals with distinguished electrical and optical properties and have gained great interest in many fields. The chemical and physical synthetic methods are usually not favorable for biological application due to high energy-consumption procedure and residual toxic chemicals. The development of novel “green” routes to prepare bio-compatible cadmium sulfide quantum dots constitutes a promising substituted approach. We used the white rot fungus Trametes versicolor for the biosynthesis of cadmium sulfide quantum dots taking account of the adsorption property of this fungus. Multiple physical characterizations involving scanning electron microscope (SEM), ultraviolet-visible (UV-vis) and photoluminescence (PL) spectroscopy, fourier transform infrared spectroscopy (FTIR), thermo-gravimetric (TG), transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed surface, optical and thermal characteristics, crystalline nature, size and shape distributions of the nanoparticles. This study provided a suitable and efficient approach to synthesize stable biocompatible cadmium sulfide quantum dots using the fungus Trametes versicolor with great potentials in the biological and biomedical researches.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Zhijie Qin, Qiulin Yue, Yan Liang, Jingjing Zhang, Lin Zhou, Orlando Borrás Hidalgo, Xinli Liu,
