Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6491005 | Journal of Biotechnology | 2015 | 9 Pages |
Abstract
2â²-Fucosyllactose (2-FL) is one of most abundant functional oligosaccharides in human milk, which is involved in many biological functions for human health. To date, most microbial systems for 2-FL production have been limited to use Escherichia coli JM strains since they cannot metabolize lactose. In this study, E. coli BL21star(DE3) was engineered through deletion of the whole endogenous lactose operon and introduction of the modified lactose operon containing lacZâ³M15 from E. coli K-12. Expression of genes for guanosine 5â²-diphosphate (GDP)-l-fucose biosynthetic enzymes and heterologous α-1,2-fucosyltransferase (FucT2) from Helicobacter pylori allowed the engineered E. coli BL21star(DE3) to produce 2-FL with 3-times enhanced yield than the non-engineered E. coli BL21star(DE3). In addition, the titer and yield of 2-FL were further improved by adding the three aspartate molecules at the N-terminal of FucT2. Overall, 6.4 g/L 2-FL with the yield of 0.225 g 2-FL/g lactose was obtained in fed-batch fermentation of the engineered E. coli BL21star(DE3) expressing GDP-l-fucose biosynthetic enzymes and three aspartate tagged FucT2.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Young-Wook Chin, Ji-Yeong Kim, Won-Heong Lee, Jin-Ho Seo,