Article ID Journal Published Year Pages File Type
649103 Applied Thermal Engineering 2009 11 Pages PDF
Abstract
Numerical modeling of the electric field effect on natural convection in the square enclosures with single fin and multiple fins is investigated. The interactions between electric, flow, and temperature fields are analyzed using a computational fluid dynamics technique. The parameters considered are the supplied voltage, Rayleigh number, size of enclosure, electrode arrangement, number of fins, and fin length. It can be concluded that the flow and heat transfer enhancements are the decreasing function of Rayleigh number. Moreover, the heat transfer coefficient is substantially improved by the electric field effect especially at the high number of fins and long fin length. Surprisingly, the maximum average velocity and heat transfer enhancement occur at the different electrode arrangements for the single fin and multiple fins.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,