Article ID Journal Published Year Pages File Type
6491218 Journal of Biotechnology 2015 9 Pages PDF
Abstract
Chinese hamster ovary (CHO) cells represent the most commonly used production cell line for therapeutic proteins. By recent genome and transcriptome sequencing a basis was created for future investigations of genotype-phenotype relationships and for improvement of CHO cell productivity and product quality. In this context information is missing about DNA cytosine methylation as a crucial epigenetic modification and an important element in mammalian genome regulation and development. Here, we present the first DNA methylation map of a CHO cell line in single-base resolution that was generated by whole genome bisulfite sequencing combined with gene expression analysis by CHO microarrays. We show CHO DP-12 cells to exhibit global hypomethylation compared to a majority of mammalian methylomes and hypermethylation of CpG-dense regions at gene promoters called CpG islands. We also observed partially methylated domains that cover 62% of the CHO DP-12 cell genome and contain functional clusters of genes. Gene expression analysis showed these clusters to be either highly or weakly expressed with regard to CHO-specific characteristics and hence proves DNA methylation in CHO cells to be an important link between genomics and transcriptomics.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , ,