Article ID Journal Published Year Pages File Type
6492284 Journal of Biotechnology 2010 8 Pages PDF
Abstract
The possible release of selectable marker genes from genetically modified transgenic plants, or of gut microbes, to the environment, has raised worldwide public concerns. In this study, we showed the generation of marker-free transgenic maize plants constitutively expressing AtNHX1, a Na+/H+ antiporter gene from Arabidopsis that conferred salt tolerance on plants, using the FLP/FRT site-specific recombination system. Transgenic plant expressing a modified FLP recombinase gene was crossed with transgenic plant harboring AtNHX1 and mutant als, a selectable marker gene flanked by two directed FRT sites. The sexual crossing led to precise and complete excision of the FRT-surrounded als marker gene in the F1 progenies. Further salt tolerance examinations indicated that marker-free AtNHX1 transgenic plants accumulated more Na+ and K+, and produced greater biomass and yields than did the wild-type plants when grown in high saline fields. These results demonstrate the feasibility of using this FLP/FRT-based marker elimination system to generate marker-free transgenic important cereal crops with improved salt tolerance.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,