Article ID Journal Published Year Pages File Type
6493357 Journal of Photochemistry and Photobiology B: Biology 2018 9 Pages PDF
Abstract
For the first time, differences in the average fluorescence lifetime of tryptophanyl residues were measured between RCs frozen in the dark and in the actinic light. The obtained results can be explained by the RC transitions between different conformational states and the dynamic processes in the structure of the hydrogen bonds of RCs. We assumed that RCs exist in two main microconformations - “fast” and “slow”, which are characterized by different rates of P+ and QA− recombination reactions. The “fast” conformation is induced in frozen RCs in the dark, while the “slow” conformation of RC occurs when the RC preparation is frozen under actinic light. An explanation of the temperature dependencies of tryptophan fluorescence lifetimes in RC proteins was made under the assumption that temperature changes affect mainly the electron transfer from the indole ring of the tryptophan molecule to the nearest amide or carboxyl groups.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,