Article ID Journal Published Year Pages File Type
6493662 Journal of Photochemistry and Photobiology B: Biology 2016 7 Pages PDF
Abstract
Progressive death of retinal pigment epithelium (RPE) cells is a hallmark of age-related macular degeneration (AMD), the leading cause of blindness in all developed countries. Photooxidative damage and activation of the NLRP3 inflammasome have been suggested as contributing factors to this process. We investigated the effects of inflammasome activation on oxidative damage-induced RPE cell death. In primary human RPE cells and ARPE-19 cells, lipofuscin accumulated following incubation with oxidatively modified photoreceptor outer segments. Oxidative stress was induced by blue light irradiation (dominant wavelength: 448 nm, irradiance: 0.8 mW/cm2, duration: 3 to 6 h) of lipofuscin-loaded cells and resulted in cell death by apoptosis. Prior inflammasome priming by IL-1α or complement activation product C5a altered the cell death mechanism to pyroptosis and resulted in a significant increase of the phototoxic effect. Following IL-1α priming, viability 24 h after irradiation was reduced in primary RPE cells and ARPE-19 cells from 65.3% and 56.7% to 22.6% (p = 0.003) and 5.1% (p = 0.0002), respectively. Inflammasome-mediated IL-1β release occurred only in association with pyroptotic cell lysis. Inflammasome priming by conditioned media of pyroptotic cells likewise increased cell death. Suppression of inflammasome activation by inhibition of caspase-1 or cathepsins B and L significantly reduced cell death in primed cells. In summary, inflammasome priming by IL-1α, C5a, or conditioned media of pyroptotic cells increases RPE cell susceptibility to photooxidative damage-mediated cell death and changes the mechanism of induced cell death from apoptosis to pyroptosis. This process may contribute to RPE degeneration in AMD and provide new targets for intervention.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,