Article ID Journal Published Year Pages File Type
6493707 Journal of Photochemistry and Photobiology B: Biology 2016 8 Pages PDF
Abstract
Photosynthetic activity was identified in the under-soil hypocotyl part of 14-day-old soil-grown bean plants (Phaseolus vulgaris L. cv. Magnum) cultivated in pots under natural light-dark cycles. Electron microscopic, proteomic and fluorescence kinetic and imaging methods were used to study the photosynthetic apparatus and its activity. Under-soil shoots at 0-2 cm soil depth featured chloroplasts with low grana and starch grains and with pigment-protein compositions similar to those of the above-soil green shoot parts. However, the relative amounts of photosystem II (PSII) supercomplexes were higher; in addition a PIP-type aquaporin protein was identified in the under-soil thylakoids. Chlorophyll-a fluorescence induction measurements showed that the above- and under-soil hypocotyl segments had similar photochemical yields at low (10-55 μmol photons m− 2 s− 1) light intensities. However, at higher photon flux densities the electron transport rate decreased in the under-soil shoot parts due to inactivation of the PSII reaction centers. These properties show the development of a low-light adapted photosynthetic apparatus driven by light piping of the above-soil shoot. The results of this paper demonstrate that the classic model assigning source and sink functions to above- and under-soil tissues is to be refined, and a low-light adapted photosynthetic apparatus in under-soil bean hypocotyls is capable of contributing to its own carbon supply.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , ,