Article ID Journal Published Year Pages File Type
649383 Applied Thermal Engineering 2007 9 Pages PDF
Abstract

A numerical study of steady state flow and heat transfer has been conducted for the multiple plate porous insulation used in the reactor pressure vessels of ‘Magnox’ nuclear power stations. The insulation pack studied, consisting of seven dimpled stainless steel sheets and six plane stainless steel sheets, was of the type installed in the Sizewell A plant. In the reactor application the fluid within the insulation pack is carbon dioxide at 20 bar but in the numerical investigation the insulation performance was examined in air at lower pressures. A three-dimensional computation model with a periodicity condition was used in the numerical investigation. Result was obtained for laminar forced convection with constant wall temperatures. Numerical results are presented to show the flow and thermal fields in a single flow passage. In forced convection it is shown that mid-dimple ‘peaking’ of the Nusselt number distribution may be related directly to the convective influence of distorted velocity profiles.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,