Article ID Journal Published Year Pages File Type
6493852 Journal of Photochemistry and Photobiology B: Biology 2015 43 Pages PDF
Abstract
A series of five mono-styryl and their corresponding symmetric di-styryl-2,6-diiodo-BODIPYs containing indolyl, pyrrolyl, thienyl or tri(ethylene glycol)phenyl groups were synthesized using Knoevenagel condensations. The yields for the condensation reactions were improved up to 40% using microwave irradiation (90 °C for 1 h at 400 W) due to lower decomposition of BODIPYs upon prolonged heating. The spectroscopic, structural (including the X-ray of a di-styryl-2,6-diiodo-BODIPY) and in vitro properties of the BODIPYs were investigated. The extension of π-conjugation through the 3,5-dimethyls of the known phototoxic 2,6-diiodo-BODIPY 1 produced bathochromic shifts in the absorption and emission spectra, in the order of 63-125 nm for the mono-styryl- and 128-220 nm for the di-styryl-BODIPYs in DMSO. The largest red-shifts were observed for the indolyl-containing BODIPYs while the largest fluorescence quantum yields were observed for the tri(ethyleneglycol)phenylstyryl-BODIPYs. Among this series, only the mono-styryl-BODIPYs were phototoxic (IC50 = 2-15 μM at 1.5 J/cm2), and were observed to localize preferentially in the cell ER and mitochondria. On the other hand, the di-styryl-BODIPYs were found to have low or no phototoxicity (IC50 > 100 μM at 1.5 J/cm2). Among this series of compounds BODIPY 2a shows the most promise for application as photosensitizer in PDT.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,