Article ID Journal Published Year Pages File Type
6494358 Metabolic Engineering 2015 10 Pages PDF
Abstract
Lipogenic organisms represent great starting points for metabolic engineering of oleochemical production. While previous engineering efforts were able to significantly improve lipid production in Yarrowia lipolytica, the lipogenesis landscape, especially with respect to regulatory elements, has not been fully explored. Through a comparative genomics and transcriptomics approach, we identified and validated a mutant mga2 protein that serves as a regulator of desaturase gene expression and potent lipogenesis factor. The resulting strain is enriched in unsaturated fatty acids. Comparing the underlying mechanism of this mutant to other previously engineered strains suggests that creating an imbalance between glycolysis and the TCA cycle can serve as a driving force for lipogenesis when combined with fatty acid catabolism overexpressions. Further comparative transcriptomics analysis revealed both distinct and convergent rewiring associated with these different genotypes. Finally, by combining metabolic engineering targets, it is possible to further engineer a strain containing the mutant mga2 gene to a lipid production titer of 25 g/L.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,