Article ID Journal Published Year Pages File Type
6494362 Metabolic Engineering 2015 33 Pages PDF
Abstract
In this work, we present a novel approach for performing 13C metabolic flux analysis (13C-MFA) of co-culture systems. We demonstrate for the first time that it is possible to determine metabolic flux distributions in multiple species simultaneously without the need for physical separation of cells or proteins, or overexpression of species-specific products. Instead, metabolic fluxes for each species in a co-culture are estimated directly from isotopic labeling of total biomass obtained using conventional mass spectrometry approaches such as GC-MS. In addition to determining metabolic fluxes, this approach estimates the relative population size of each species in a mixed culture and inter-species metabolite exchange. As such, it enables detailed studies of microbial communities including species dynamics and interactions between community members. The methodology is experimentally validated here using a co-culture of two E. coli knockout strains. Taken together, this work greatly extends the scope of 13C-MFA to a large number of multi-cellular systems that are of significant importance in biotechnology and medicine.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,