Article ID Journal Published Year Pages File Type
6494668 Metabolic Engineering 2013 7 Pages PDF
Abstract
13C-Metabolic flux analysis (13C-MFA) is a powerful model-based analysis technique for determining intracellular metabolic fluxes in living cells. It has become a standard tool in many labs for quantifying cell physiology, e.g., in metabolic engineering, systems biology, biotechnology, and biomedical research. With the increasing number of 13C-MFA studies published each year, it is now ever more important to provide practical guidelines for performing and publishing 13C-MFA studies so that quality is not sacrificed as the number of publications increases. The main purpose of this paper is to provide an overview of good practices in 13C-MFA, which can eventually be used as minimum data standards for publishing 13C-MFA studies. The motivation for this work is two-fold: (1) currently, there is no general consensus among researchers and journal editors as to what minimum data standards should be required for publishing 13C-MFA studies; as a result, there are great discrepancies in terms of quality and consistency; and (2) there is a growing number of studies that cannot be reproduced or verified independently due to incomplete information provided in these publications. This creates confusion, e.g. when trying to reconcile conflicting results, and hinders progress in the field. Here, we review current status in the 13C-MFA field and highlight some of the shortcomings with regards to 13C-MFA publications. We then propose a checklist that encompasses good practices in 13C-MFA. We hope that these guidelines will be a valuable resource for the community and allow 13C-flux studies to be more easily reproduced and accessed by others in the future.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, ,