Article ID Journal Published Year Pages File Type
6494721 Metabolic Engineering 2013 7 Pages PDF
Abstract
The expression levels of sorbose/sorbosone dehydrogenase genes (sdh and sndh) and the synthesis genes (pqqABCDEN) of the adjoint cofactor pyrroloquinoline quinone (PQQ) were genetically manipulated in Ketogulonigenium vulgare to increase the production of 2-keto-l-gulonic acid (2-KLG), the precursor of vitamin C, in the consortium of K. vulgare and Bacillus cereus. We found that overexpression of sdh-sndh alone in K. vulgare could not significantly enhance the production of 2-KLG, revealing the cofactor PQQ was required for the biosynthesis of 2-KLG. Various expression levels of PQQ were achieved by differential expression of pqqA, pqqABCDE and pqqABCDEN, respectively. The combinatorial expression of sdh/sndh and pqqABCDEN in K. vulgare enabled a 20% increase in the production of 2-KLG (79.1±0.6 g l−1) than that of the parental K. vulgare (65.9±0.4 g l−1) in shaking flasks. Our results demonstrated the balanced co-expression of both the key enzymes and the related cofactors was an efficient strategy to increase chemicals' biosynthesis.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,