Article ID Journal Published Year Pages File Type
649975 Applied Thermal Engineering 2003 9 Pages PDF
Abstract

To solve the problems associated with employing the single melt point phase change material in a heat receiver for the NASA 2 kW solar dynamic power system, this paper presents a practically easy to carry-out PCM receiver model composed of three different phase change temperature materials together with the corresponding physical model. A numerical solution is also given by which the maximal temperature for heat transfer, working fluid exit temperature, and liquid PCM fraction of the total heat transfer tube in whole are calculated. Furthermore, the results are compared with those obtained from the single PCM heat receiver. The results show that it is possible to improve the receiver performance and to reduce both the fluctuation of working fluid temperature and the weight of the heat receiver. All results of the calculation can be used to guide the heat receiver design.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,