Article ID Journal Published Year Pages File Type
653098 International Communications in Heat and Mass Transfer 2015 11 Pages PDF
Abstract
Eulerian-Eulerian multi-phase mixture model is applied to numerically analyse the turbulent flow and heat transfer behaviour of water based Al2O3 and TiO2 nanofluids in a pipe. The main goal of the present work is to investigate the effects of volume concentrations, Brownian motion and size diameter of nanoparticles on the flow and heat transfer. Analysis of entropy generation is presented in order to investigate the condition that optimises the thermal system. Results reveal that small diameter of nanoparticles with their Brownian motion has the highest heat transfer rate as well as thermal performance factor for χ = 6%. Above all, the higher heat transfer rate is found while using the multi-phase model than the single-phase model (Saha and Paul [1]). Also, the optimal Reynolds number is found to be Re = 60 × 103 for χ = 6% and dp = 10 nm, which minimises the total entropy generation. Finally, it is showed that TiO2-water nanofluid is the most energy efficient coolant than Al2O3-water nanofluid, and some new correlations have been proposed for the calculation of average Nusselt number.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, ,