Article ID Journal Published Year Pages File Type
6540417 Computers and Electronics in Agriculture 2016 9 Pages PDF
Abstract
United Nations reports throughout recent years have stressed the growing constraint of food supply for Earth's growing human population. Honey bees are a vital part of the food chain as the most important pollinator for a wide range of crops. It is clear that protecting the population of honey bees worldwide, as well as enabling them to maximise their productivity, is an important concern. In this paper heterogeneous wireless sensor networks are utilised to collect data on a range of parameters from a beehive with the aim of accurately describing the internal conditions and colony activity. The parameters measured were: CO2, O2, pollutant gases, temperature, relative humidity, and acceleration. Weather data (sunshine, rain, and temperature) were also collected to provide an additional analysis dimension. Using a data set from a deployment at a field-deployed beehive, a biological analysis was undertaken to classify ten important hive states. This classification led to the development of a decision tree based classification algorithm which could describe the beehive using sensor network data with 95.38% accuracy. Finally, a correlation between meteorological conditions and beehive data was observed. This led to the development of an algorithm for predicting short term rain based on the parameters within the hive. Envisioned applications of this algorithm include agricultural and environmental monitoring for short term local forecasts (95.4% accuracy). Experimental results shows the low computational and energy overhead (5.35% increase in energy consumption) of the classification algorithm when deployed on one network node, which allows the node to be a self-sustainable intelligent device for smart bee hives.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,