Article ID Journal Published Year Pages File Type
659448 International Journal of Heat and Mass Transfer 2012 11 Pages PDF
Abstract

Thermally fully-developed heat transfer has been analyzed for combined electroosmotic and pressure driven flow of power-law fluid in a microchannel. Analytical expressions for transport parameters are presented in terms of the flow behavior index, the length scale ratio (ratio of Debye length to half channel height), dimensionless pressure gradient, and Joule heating parameter (ratio of Joule heating to surface heat flux). Closed form solutions are obtained for some specific values of the flow behavior index, while numerical solutions are presented for general cases. The results show that the temperature variation across the channel increases with increasing the pressure gradient. To reduce the length scale ratio is found to decrease the temperature variation, particularly for shear-thinning fluids. To increase the Joule heating parameter is to enlarge the temperature variation in the channel, especially for shear-thickening fluids. The Nusselt number can be increased by decreasing the length scale ratio due to the electroosmotic effect. Also, the Nusselt number increases with decreasing the values of flow behavior index and dimensionless pressure gradient.

Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
,