Article ID Journal Published Year Pages File Type
6601108 Electrochemistry Communications 2016 16 Pages PDF
Abstract
Polycrystalline platinum decorated by WO3 nanoparticles (WO3/Ptpc) is used as a model electrode to gain insights into the enhanced tolerance to carbon monoxide (CO) observed on such composite materials. Bifunctional-type reactions involving WO3 and Pt active sites are observed, such as hydrogen spill-over or the electrooxidation of CO molecules adsorbed on Pt sites neighboring the WO3 nanoparticles. The resulting COad-free Pt sites are active for the hydrogen oxidation reaction (HOR), thereby enhancing the HOR activity for WO3/Ptpc electrode relatively to bare Ptpc in 300 ppm CO/H2 saturated HClO4 electrolyte. However, this bifunctional effect occurs exclusively for CO molecules weakly adsorbed on Pt, i.e. only for a small fraction of the COad fully covering the Pt surface.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,