Article ID Journal Published Year Pages File Type
661 Acta Biomaterialia 2013 10 Pages PDF
Abstract

In this study, the microstructures, mechanical properties, corrosion behaviors, in vitro cytocompatibility and magnetic susceptibility of Zr–1X alloys with various alloying elements, including Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi, were systematically investigated to explore their potential use in biomedical applications. The experimental results indicated that annealed Zr–1X alloys consisted entirely or primarily of α phase. The alloying elements significantly increased the strength and hardness of pure Zr and had a relatively slight influence on elastic modulus. Ru was the most effective enhancing element and Zr–1Ru alloy had the largest elongation. The results of electrochemical corrosion indicated that adding various elements to Zr improved its corrosion resistance, as indicated by the reduced corrosion current density. The extracts of the studied Zr–1X alloys produced no significant deleterious effects on osteoblast-like cells (MG 63), indicating good in vitro cytocompatibility. All except for Zr–1Ag alloy showed decreased magnetic susceptibility compared to pure Zr, and Zr–1Ru alloy had the lowest magnetic susceptibility value, being comparable to that of α′ phase Zr–Mo alloy and Zr–Nb alloy and far lower than that of Co–Cr alloy and Ti–6Al–4V alloy. Among the experimental Zr–1X alloys, Zr–1Ru alloy possessing high strength coupled with good ductility, good in vitro cytocompatibility and low magnetic susceptibility may be a good candidate alloy for medical devices within a magnetic resonance imaging environment.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,