Article ID Journal Published Year Pages File Type
6679745 Applied Energy 2018 6 Pages PDF
Abstract
This paper proposes a novel multipurpose operation planning method for minimizing the prediction error of photovoltaic power generator outputs (PV); towards reducing the operating cost and improving voltage stability of power systems. The operation schedule (coordination) of demand response (DR) program and storage system are taken into account as the main parameters for achieving an improved voltage stability and reduction of PV output prediction error. In this approach, the stochastic programming algorithm is introduced for incorporating the uncertainty of PV output and the utility demand response for consumer side management. This is achieved by using the multi-objective genetic algorithm (MOGA) for multipurpose operation plan. The MATLAB optimization toolbox and neural network toolbox were applied in this research study. An IEEE-6 bus system is used to demonstrate the effectiveness of the proposed solution in power systems operation. The approach led to $25003.39(=$99594.53-$74591.14) reduction in the system operating cost, compared to the conventional approach. The simulation results also show that by using the proposed algorithm, the capacity of installed PV generators was increased and the voltage stability was improved at the same time. This accounted for the reduction in the effective operating cost and the improved operating condition of the power system.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,