Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6679769 | Applied Energy | 2018 | 12 Pages |
Abstract
A dynamic model of a moving packed-bed particle-to-sCO2 heat exchanger and control system for concentrating solar power (CSP) applications is presented. The shell-and-plate heat-exchanger model allows for numerically investigating the transient operation and control of the heat addition to the power cycle in a particle-based CSP plant. The aim of the particle-to-sCO2 heat exchanger is to raise the sCO2 temperature to 700â¯Â°C at a pressure of 20â¯MPa. The control system adjusts both the particle and sCO2 mass flow rates as well as an sCO2 bypass to obtain the desired sCO2 turbine inlet and particle outlet temperatures for a prescribed thermal duty. The control system is demonstrated for disturbances in particle and sCO2 inlet temperatures as well as changes in thermal duty for part-load operation. A feed-forward control strategy that adjusts the sCO2 and particle mass-flow rates as functions of measured inlet temperatures and a steady-state model solution was able to return the heat exchanger to the desired operating condition, but not without experiencing significant deviations in the sCO2 turbine inlet and particle outlet temperature (>40â¯Â°C) during the transient. To reduce both sCO2 and particle temperature deviations, a feedback control strategy was investigated, where sCO2 and particle mass-flow rates based on the steady-state model solution were corrected based on measured outlet temperature deviations. The feedback control strategy maintains sCO2 turbine inlet and particle outlet temperature to within 16â¯Â°C of the set points with a three-minute settling time for step changes in inlet conditions and thermal duty. This finding demonstrates the possibility of dynamically dispatching next-generation particle-based CSP plants driving sCO2 power cycles.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
M. Fernández-Torrijos, K.J. Albrecht, C.K. Ho,