Article ID Journal Published Year Pages File Type
6679863 Applied Energy 2018 13 Pages PDF
Abstract
Significant increase in the installation and penetration of Renewable Energy Resources (RES) has raised intermittency and variability issues in the electric power grid. Solutions based on fast-response energy storage can be costly, especially when dealing with higher renewable energy penetration rate. The rising popularity of electric vehicles (EVs) also brings challenges to the system planning, dispatching and operation. Due to the random dynamic nature of electric vehicle charging and routing, electric vehicle load can be challenging to the power distribution operators and utilities. The bright side is that the load of EV charging is shiftable and can be leveraged to reduce the variability of renewable energy by consuming it locally. In this paper, we proposed a real-time system that incorporates the concepts of prioritization and cryptocurrency, named SMERCOIN, to incentivize electric vehicle users to collectively charge with a renewable energy-friendly schedule. The system implements a ranking scheme by giving charging priority to users with a better renewable energy usage history. By incorporating a blockchain-based cryptocurrency component, the system can incentivize user with monetary and non-monetary means in a flat-rate system. The effectiveness of the system mechanism has been verified by both numerical simulations and experiments. The system experiment has been implemented on campus of the University of California, Los Angeles (UCLA) for 15 months and the results show that the usage of solar energy has increased significantly.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,