Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6680318 | Applied Energy | 2018 | 15 Pages |
Abstract
This paper deals with development of a versatile and compact control strategy for voltage source converters in grid-connected and islanded microgrids using synchronous current converters technology. The key feature is its new integrated high-order controller/synchronizer with applicability to both operational modes without strategy rearrangement. Using high-order controllers, on the other hand, results in rather complex analysis and design process, therefore this paper aims at providing a general and simple theme for the design and parameter selection. The controller also provides adaptive and automated current-based grid synchronization. Moreover, the controller realizes a power-source current-controlled microgrid with minimum control loops, as compared to widely adopted voltage controlled microgrids in the literature, with advantages such as fault-ride-through and inherent droop-less power sharing capabilities. Adaptive current-based synchronization and smooth switching to islanding mode provides high flexibility, reliability and only-plug operation capability. Extensive simulation and experimental results are presented to demonstrate performance of the proposed control and management strategy.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Mahdi Ashabani, Hoay Beng Gooi, Josep M. Guerrero,