Article ID Journal Published Year Pages File Type
6680377 Applied Energy 2018 11 Pages PDF
Abstract
The Power Grid balance requires the organization of multiple supply plants to match the electricity demand of the users', starting from the most accurate forecasts available and with the need of continuous adjustments based on the actual demand profile. The power dispatching is currently based on a day-ahead wholesale market, which fixes an hourly price based on the offers and bids of producers and buyers. In this paper an alternative approach is proposed, with the integration of performance indicators of the electricity generation plants. Optimization algorithms at the base of Smart Grids operation could support a multi-objective approach that overcomes a simple economic optimum. The aspects that have been considered are the renewable energy share, the primary energy consumption, the global emissions (i.e. CO2) and the local emissions (i.e. NOX, CO, PM, etc.). A precise calculation of these performance indicators is proposed for three real natural gas combined cycles, and the results are compared with the average data for the electricity produced in Italy and supplied to the Power Grid. The strong variability of those indicators highlights the importance of performing detailed analyses with up-to-date actual operation data, as the evolution towards sustainability targets in Smart Grids require an integrated approach.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
,