Article ID Journal Published Year Pages File Type
6680448 Applied Energy 2018 8 Pages PDF
Abstract
Raw bio-oil was produced from fast pyrolysis of pine sawdust in a fluidized-bed boiler at 550 °C. Then the raw bio-oil is partially mixed with kitchen waste oil (100:0, 50:50, 0:100 by weight) and subsequently subjected to off line co-catalytic cracking process for upgrading over HZSM-5. The raw bio-oil mixed with kitchen waste oil test shows that the co-catalytic cracking improves the organic bio-oil yield and inhibits the coke formation. The oxygen content of organic bio-oil decreased significantly after upgrading. The reaction pathway of co-upgrading is proposed, which shows that kitchen waste oil, as a hydrogen supplier, transform hydrogen from high saturation degree to the unsaturation oxygenated compounds to form hydrocarbons. Co-catalytic cracking process of raw bio-oil and kitchen waste oil not only can be used in raw bio-oil upgrading but also can recycle kitchen waste oil with relatively low cost. Moreover, the deactivation catalysts are analyzed by TG-FTIR (Thermogravimetric-Fourier Transform Infrared spectroscopy) and SEM (Scanning Electron Microscope).
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , , , , ,