Article ID Journal Published Year Pages File Type
6680943 Applied Energy 2018 11 Pages PDF
Abstract
Oxy-fuel combustion is one route to large scale carbon capture and storage. Fuel is combusted in oxygen rather than air, allowing pure CO2 to be captured and sequestered. Currently, the required oxygen is produced via cryogenic air separation, which imposes a significant energy penalty. Chemical looping air separation (CLAS) is an alternative process for the production of oxygen, and relies on the repeated oxidation and reduction of solid oxygen carriers (typically metal oxides). The energy efficiency is governed by the thermodynamic properties of the oxygen carrier material, and how well the CLAS process can be heat-integrated with the process consuming oxygen. In this study, key thermodynamic properties have been identified and assessed using a steady state model of a CLAS-oxy-fuel power plant. It is demonstrated that energy penalties as low as 1.5 percentage points can be obtained for a narrow range of material properties. Based on density functional theory calculations, 14 oxygen carrier systems, which are novel or have received little attention, have been identified that could potentially achieve this minimal energy penalty.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,