Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6681416 | Applied Energy | 2018 | 15 Pages |
Abstract
The paper conducts scenario analysis to explore the impact of these parameters on high level model behavior and resulting bid strategy. The parameters explored include hourly regulation prices, local load conditions leading to retail demand charges, forced symmetry constraints for regulation bids, SOC penalty values to reserve higher states-of-charge in vehicles, and expected regulation resource utilization while providing reserves. These analyses show significant sensitivity in the frequency regulation bidding strategy to the regulation utilization, as well as large differences in the regulation prices between regulation up (discharging capacity) and regulation down (charging capacity). Results also suggest enforcing symmetry in regulation appears to have significant impacts in regulation revenue when there is large relative disparities between prices in the up and down direction. Finally, imposing a small cost on low SOC values significantly impacts the fleet-wide average SOC, making the system more resilient to uncertainty in the mobility demands gathered at the time of making day ahead decisions.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Nicholas DeForest, Jason S. MacDonald, Douglas R. Black,