Article ID Journal Published Year Pages File Type
6682292 Applied Energy 2016 12 Pages PDF
Abstract
Suspended particle device (SPD) switchable glazing has potential to control transmission of solar radiation in the visible range by changing its transparency from 55% to 5%. Outdoor test cell characterisation of a SPD switchable glazing offered the dynamic solar heat gain coefficient (SHGC) which varied between 0.05 (when opaque) and 0.38 (when transparent). Reduction of maximum temperature rise of 11% and 15% was possible using SPD “transparent” and “opaque” state compared to same area double-glazing. Insulated test cell with water flow heat exchanger was employed to measure the cooling load reduction potential of SPD glazing while its transmission changed from “transparent” to “opaque” state. A cooling load reduction up to 6 kW h for a 0.343 m3 volume test cell was possible by changing a 0.21 m × 0.28 m SPD glazing transparency from “transparent” to “opaque”. Average overall heat transfer coefficient of SPD glazing varied between 5.02 W/m2 K and 5.2 W/m2 K for two different states.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,