Article ID Journal Published Year Pages File Type
6682955 Applied Energy 2016 9 Pages PDF
Abstract
Buildings should be understood as a process that consumes energy in all their phases (design, construction, use and end-of-life) and, more specifically, the building envelope is clearly involved in all of them. For this reason, the International Energy Agency defines in its latest publication the improvement of building envelopes as one of the key points to reduce the energy consumption in buildings. In the present study, two sustainable construction systems based on rammed earth walls are adapted to modern requirements to be thermally tested and compared against three Mediterranean conventional systems under summer conditions. The experimentation was done by performing several experiments in free floating and controlled temperature conditions at real scale in five cubicle-shape buildings with inner dimensions 2.4 × 2.4 × 2.4 m. The purpose of this study is to demonstrate that more sustainable construction systems can be used instead of conventional ones, with higher embodied energy, and achieve similar thermal response. Results show that the reduction of rammed earth wall thickness strongly penalizes its thermal behavior. However, similar thermal response than conventional systems is reached when 6 cm of wooden insulation panels are added in the outer face of the cubicle-shape building.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,