Article ID Journal Published Year Pages File Type
668397 International Journal of Thermal Sciences 2014 11 Pages PDF
Abstract
The present study deals with the steady stagnation point flow of a Casson nano fluid in the presence of convective boundary conditions. The fluid strikes the wall in an oblique manner. The governing nonlinear partial differential equations of the physical problem are presented and then converted into nonlinear ordinary differential equations by using similar and non-similar variables. The resulting ordinary differential equations are successfully solved analytically using Optimal Homotopy analysis method (OHAM) via BVPh2.0. Non-dimensional velocities, temperature and Nanoparticle concentration profiles are expressed through graphs. In order to understand the flow behavior at the stretching convective surface, numerical values of skin friction co-efficient and local heat and mass flux are tabulated. Comparison of the present analysis is made with the previous existing literature and an appreciable agreement in the values is observed for the limiting case.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,