Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6685681 | Applied Energy | 2015 | 9 Pages |
Abstract
Owing to the strict restrictions imposed by the Marine Pollution Protocol and the rapid development of renewable energy, the use of solar generation and energy storage systems in ship power systems has been increasingly attracting attention. However, the improper sizing of a hybrid power generation system in a ship power system will result in a high investment cost and increased greenhouse gas emission. This paper proposes a method for determining the optimal size of the photovoltaic (PV) generation system, the diesel generator and the energy storage system in a stand-alone ship power system that minimizes the investment cost, fuel cost and the CO2 emissions. The power generation from PV modules on a ship relies on the date, local time, time zone, longitude and latitude along a navigation route and is different from the conditions of power systems on land. Thus, a method, which takes the seasonal and geographical variation of solar irradiations and temperatures along the route from Dalian in China to Aden in Yemen into account, for correcting the output of PV modules is developed in this paper. The proposed method considers five conditions along the navigation route to model the total ship load. Four cases are studied in details to demonstrate the applicability of the proposed algorithm.
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Hai Lan, Shuli Wen, Ying-Yi Hong, David C. Yu, Lijun Zhang,