Article ID Journal Published Year Pages File Type
6687287 Applied Energy 2015 13 Pages PDF
Abstract
This paper proposes a data-driven diagnostic approach for Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems. Fault detection and isolation (FDI) is realized by analyzing individual cell voltages. A feature extraction method Fisher Discriminant Analysis (FDA) and a multi-class classification method Directed Acyclic Graph Support Vector Machine (DAGSVM) are utilized successively to extract the useful features from raw data and classify the extracted features into various classes related to health states. Experimental data of two different stacks are used to validate the proposed approach. The results show that five concerned faults can be detected and isolated with a high accuracy. Moreover, the light computational cost of the approach enhances the possibility of its online implementation.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,