Article ID Journal Published Year Pages File Type
6687862 Applied Energy 2015 6 Pages PDF
Abstract
The enclathration of guest gases such as CH4 and CO2 in tetra-n-butyl ammonium chloride (TBAC) semiclathrates and their potential application to natural gas storage and CO2 capture were examined with a primary focus on stability condition measurements and cage filling characteristics. The phase behaviors clearly demonstrated that the double CH4 (or CO2) + TBAC semiclathrates yielded a significantly enhanced thermodynamic stability. In particular, the highest stabilization occurred at 3.3 mol%, the stoichiometric concentration of TBAC·29.7H2O. The cage-dependent 13C NMR chemical shift identified CH4 molecules enclathrated in the small 512 cages of the double TBAC semiclathrates. CO2 inclusion in the double TBAC semiclathrate was also confirmed using Raman spectroscopy. In addition, the dissociation enthalpy and the dissociation temperature of the TBAC semiclathrate under atmospheric pressure were measured to be 204.8 ± 1.7 J/g and 288.0 K, respectively, by a differential scanning calorimeter. The experimental results demonstrate that TBAC semiclathrates can potentially be used for gas storage and CO2 capture due to their high thermodynamic stability and favorable enclathration characteristics of guest gases.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,