Article ID Journal Published Year Pages File Type
6688776 Applied Energy 2014 14 Pages PDF
Abstract
This research investigated the effect of guide vanes installed in front of the intake runner of a compression ignition (CI) engine run with biodiesel. Firstly, the simulation method used SolidWorks and ANSYS-CFX to determine the optimum vane height of the guide vane from among 10 variation models with different vane heights between 0.10 and 1.00 times the radius of the intake runner (R) (called 0.10R for 0.10 times R, etc.). The simulation results of in-cylinder turbulence kinetic energy (TKE), velocity, vorticity and swirling strength were presented and discussed. Based on these results, 0.70R was found to be the optimum guide vane height as it improved TKE, mostly improved velocity and partly improved vorticity, swirling strength within the fuel injection region from crank angles before the start of injection up to the first part of expansion stroke. Five guide vane models (0.10R, 0.30R, 0.50R, 0.70R, and 0.90R) were then fabricated and tested on a CI generator diesel engine run with biodiesel coupled with a load bank. Based on the experimental results, 0.70R guide vane model showed the most improvements as it reduced the brake-specific fuel consumption (BSFC), carbon monoxide (CO) and hydrocarbons (HC) as well as increased engine efficiency compared to the run without the guide vanes when ran with biodiesel. Hence, this research found that using guide vanes can improve the performance and reduce the emissions of CI engine run with biodiesel.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,