Article ID Journal Published Year Pages File Type
6690052 Applied Energy 2014 12 Pages PDF
Abstract
In order to develop more efficient and cleaner gasoline engines, a number of new engine operating strategies have been proposed and researched on different engines, including the spark ignition (SI) and controlled autoignition (CAI) or HCCI in both 2-stroke and 4-stroke cycles in a poppet valve engine. In this work, a single cylinder direct injection gasoline engine equipped with an electro-hydraulic valve-train system has been commissioned and used to achieve seven different operating modes, including: 4-stroke throttle-controlled SI, 4-stroke intake valve throttled SI, 4-stroke positive valve overlap SI, 4-stroke negative valve overlap CAI, 4-stroke exhaust rebreathing CAI, 2-stroke CAI and 2-stroke SI. Their performance and emission characteristics were analysed and compared at a typical engine calibration operating condition of 1500 rpm and 3.6 bar IMEP in 4-stroke or 1.8 bar IMEP in 2-stroke. Results show that 4-stroke positive valve overlap SI, 4-stroke NVO CAI and exhaust rebreathing CAI modes have better fuel economy and lower NOx emissions than the conventional throttled 4-stroke SI operation. The 2-stroke CAI operation was found to produce higher combustion efficiency and lower ISFC but lower brake efficiency than the 4-s-stroke operations at the same power output due to the supercharger's efficiency. But, at the same IMEP as the 4-stroke operation, the 2-stroke CAI operation results in 29% reduction in BSFC, indicating its potential synergy with highly downsized direct injection gasoline engines for much better fuel economy and performance.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,