Article ID Journal Published Year Pages File Type
6690274 Applied Energy 2014 8 Pages PDF
Abstract
Two separate models were developed to maximize sugar content and minimize inhibitor concentrations, resulting in xylose yields of ∼50% and ∼60% after pretreatment. In addition, a Liquefaction plus Simultaneous Saccharification and co-Fermentation (L+SScF) was performed to compare the fermentability of the resulting pretreated biomass. After the 6-h liquefaction step using the Cellic CTec2 enzyme from Novozyme and 10% DW pretreated biomass, the total sugar concentration in the slurry was 47 g/L and 51 g/L for the two conditions respectively. Enzymatic hydrolysis continued during fermentation using an ethanologenic derivative of Escherichia coli KO11. The sugars were completely consumed in 96 h with product yields of 0.217 and 0.243 g ethanol/g DW biomass for each condition, respectively. These yields are equivalent to 275 and 304 L/tonne DW, confirming the effectiveness of the L+SScF process using phosphoric-acid-pretreated Eucalyptus.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , , , , ,