Article ID Journal Published Year Pages File Type
6692000 Applied Energy 2014 7 Pages PDF
Abstract
A dual-column temperature/vacuum swing adsorption (TVSA) with 3-aminopropyltriethoxysilane-loaded carbon nanotubes (CNT(APTS)) was built to study cyclic CO2 capture from gas streams. The working CO2 capacities and the characteristics of CNT(APTS) were preserved through 100 TVSA cycles under dry or wet conditions, displaying the multi-cycle stability of CO2 capture with CNT(APTS). The cyclic working CO2 capacity of CNT(APTS) was notably enhanced in the presence of saturated water vapor in the gas stream at 25 °C which gives relatively high desorbed CO2 concentrations (∼67%). These results suggest that a dual-column TVSA with solid CNT(APTS) has the possibility to be a promising CO2 capture technology, especially in the post-flue gas desulfurization in which saturated water vapor is present in the flue gas.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,