Article ID Journal Published Year Pages File Type
6697205 Building and Environment 2018 10 Pages PDF
Abstract
An indoor environment should be designed to provide occupants with a desirable level of thermal comfort and air quality. The optimal design of an indoor environment can be achieved by using the computational fluid dynamics (CFD)-based adjoint method to determine the size, locations, and shape of air supply inlets, and the air supply parameters (i.e., velocity, temperature, and angle). However, the optimal design may involve a large number of air supply inlets, which would be impractical to implement. This investigation developed an area-constrained topology and cluster analysis to consolidate multiple air supply inlets into a limited number and to determine their size and locations. The desired indoor environment can be maintained by further optimizing the air supply inlet shape and parameters. This investigation demonstrated the method's capability by applying it to a two-person office and a single-aisle, fully-occupied aircraft cabin. The optimal thermal comfort conditions around the occupants can be achieved with a limited number of air supply inlets at appropriate locations.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,