Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6713 | Biomaterials | 2012 | 7 Pages |
The introduction of bioactive molecules into three-dimensional porous scaffolds to mimic the in vivo microenvironment is a promising strategy for tissue engineering and stem cell research. In this study, bone morphogenetic protein-4 (BMP4) was spatially immobilized in a collagen-PLGA hybrid scaffold with a fusion BMP4 composed of an additional collagen-binding domain derived from fibronectin (CBD-BMP4). CBD-BMP4 bound to the collagen-PLGA hybrid scaffold and the BMP4-immobilized hybrid scaffold supported cell adhesion and proliferation. The osteogenic induction effect of the immobilized CBD-BMP4 was investigated with three-dimensional culture of human bone marrow-derived mesenchymal stem cells in the BMP4-immobilized collagen-PLGA hybrid scaffold. The in vivo implantation experiment demonstrated that the immobilized CBD-BMP4 maintained its osteoinductive activity, being capable of up-regulating osteogenic gene expression and biomineralization. The strong osteoinductivity of the BMP4-immobilized scaffold suggests it should be useful for bone tissue engineering, stem cell function manipulation and bone substitutes.