Article ID Journal Published Year Pages File Type
671640 Journal of Non-Newtonian Fluid Mechanics 2006 11 Pages PDF
Abstract
We study the behaviour of a single integral constitutive equation, capable of providing analytic expressions for the viscoelastic stress in extensional flows of a variety of deformation histories and geometries, ranging from uniaxial to equibiaxial. It is based on the use of a stress damping function, with a power-law dependence on the elongation, λ: h(λ) = 1/λn. The parameter n (0 ≤ n ≤ 2) signifies the nonlinear viscoelastic character of the material and, therefore, is an inverse measure of network connectivity strength of the underlying microstructure. This renders the constitutive approach applicable to incompressible polymers of a variable degree of branching, strain hardening and stress thinning behavior. Methods of connecting n with the macromolecular architecture and the alignment strength of the flow are also explored.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,