Article ID Journal Published Year Pages File Type
6740732 Engineering Structures 2014 13 Pages PDF
Abstract
Grid shells are efficient structural systems covering large open spaces with relatively small amount of materials. Also, post forming techniques allow realization of geometrically complex (free-form) shapes by means of standard connection systems. However, due to complexity of the analysis-design process, they are rarely utilized in construction design. In this paper, a 'facilitating' numerical framework is introduced in which, for a given continuous reference shape, a geometrically similar discrete model is found by implementation of a six degree of freedom formulation of the Dynamic Relaxation method, to handle members bending and torsional stiffness. A grid cutting pattern algorithm is introduced, as well as methods to numerically simulate the double-layer construction technique and a novel (single-node) cylindrical joint model. The methods are extensively tested and validated on a range of structures, from 'simple' single-rod cases to more complex, actively bent, grid shell frameworks.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , ,