Article ID Journal Published Year Pages File Type
6771 Biomaterials 2012 10 Pages PDF
Abstract

PLGA-PEG nanocapsules containing a liquid core of perfluorooctyl bromide were synthesized by an emulsion-evaporation process and designed as contrast agents for 19F MRI. Physico-chemical properties of plain and PEGylated nanocapsules were compared. The encapsulation efficiency of PFOB, estimated by 19F NMR spectroscopy, is enhanced when using PLGA-PEG instead of PLGA. PLGA-PEG nanocapsule diameter, measured by Dynamic Light Scattering is around 120 nm, in agreement with Transmission Electron microscopy (TEM) observations. TEM and Scanning Electron Microscopy (SEM) reveal that spherical core–shell morphology is preserved. PEGylation is further confirmed by Zeta potential measurements and X-ray Photoelectron Spectroscopy. In vitro, stealthiness of the PEGylated nanocapsules is evidenced by weak complement activation. Accumulation kinetics in the liver and the spleen was performed by 19F MRI in mice, during the first 90 min after intravenous injection. In the liver, plain nanocapsules accumulate faster than their PEGylated counterparts. We observe PEGylated nanocapsule accumulation in CT26 xenograft tumor 7 h after administration to mice, whereas plain nanocapsules remain undetectable, using 19F MRI. Our results validate the use of diblock copolymers for PEGylation to increase the residence time of nanocapsules in the blood stream and to reach tumors by the Enhanced Permeation and Retention (EPR) effect.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , ,