Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6777016 | Thin-Walled Structures | 2018 | 5 Pages |
Abstract
In recent years, artificial neural networks were included in the prediction of deformations of structural elements, such as pipes or tensile specimens. Following this method, classical mechanical calculations were replaced by a set of matrix multiplications by means of artificial intelligence. This was also continued in finite element approaches, wherein constitutive equations were substituted by an artificial neural network (ANN). However, little is known about predicting complex non-linear structural deformations with artificial intelligence. The aim of the present study is to make ANN accessible to complicated structural deformations. Here, shock-wave loaded plates are chosen, which lead to a boundary value problem taking geometrical and physical non-linearities into account. A wide range of strain-rates and highly dynamic deformations are covered in this type of deformation. One ANN is proposed for the entire structural model and another ANN is developed for replacing viscoplastic constitutive equations, integrated into a finite element code, leading to an intelligent finite element. All calculated results are verified by experiments with a shock tube and short-time measurement techniques.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Marcus Stoffel, Franz Bamer, Bernd Markert,